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Abstract. In many applications of computerised decision support, a recognised 
source of undesired outcomes is operators’ apparent over-reliance on 
automation. For instance, an operator may fail to react to a potentially 
dangerous situation because a computer fails to generate an alarm. However, 
the very use of terms like “over-reliance” betrays possible misunderstandings of 
these phenomena and their causes, which may lead to ineffective corrective 
action. For instance, training or procedural changes are favored responses, but 
they do not address all causes of apparently “over-reliant” behaviour. We 
review relevant literature in the area of “automation bias” and describe the 
diverse mechanisms that may be involved in human errors when using 
computer support. We discuss these mechanisms, with reference to errors of 
omission when using “alerting systems”, with the help of examples of novel 
counterintuitive findings we obtained from a case study in a health care 
application, as well as other examples from the literature. 
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1 Introduction 

It has long been known that introducing automation might have unexpected side 
effects on human performance [1, 2]. For instance, consider a computer tool designed 
to highlight targets of interest on a radar screen. If the computer does not highlight 
one such target, even an experienced radar operator could be led to miss that target, 
even if he would not have missed it without the computer aid. Such phenomena are 
often attributed to complacency, which makes operators abdicate their responsibility 
to the automated support. Given this interpretation, a tool designer may assume this to 
be the main risk, and so proper training and indoctrination is the natural defence (e.g.  
[3]); this attitude is widespread in practice. We argue that this view is too simplistic, 
and present a much richer picture of unintended, subtle effects that automation may 
have and which a designer needs to be prepared to guard against. 

Automation is increasingly taking on the role of supporting knowledge-intensive 
human tasks rather than directly replacing some of the human’s functions. This 
actually makes the problem of computer-related human errors subtler. The 



responsibility for correct action rests with the user. One might think that user mistakes 
can be reduced by simple training or, sometimes, by a user interface that prevents 
those mistakes. But in practice computers and their users form human-computer 
systems, or “socio-technical systems”, which need to be assessed as whole systems 
from the viewpoints of reliability and safety. Examples of these supportive systems 
are alerting systems: from spell-checkers to alarm-filtering systems for industrial 
control rooms through collision warning systems in transportation or computerised 
monitoring in health care. In these monitoring applications, automation typically 
assists the operator in judgement-oriented tasks – like dealing with anomalies and 
taking high-level decisions – by adding to situational data broadly “advisory” input: 
attention cues, pre-filtered alarms, suggested diagnoses, or even recommended 
manoeuvres. If operators “trust” the computer's help too much or too little [4-6], 
compared to their own judgement skills, reliability and safety of operation may suffer. 
Labels used in the literature are: “automation bias”, automation-induced 
“complacency” [7-9], “over-reliance” on automation [10], “automation dependence” 
[11] or computer induced “confirmation bias” [12].  

The purpose of this paper is to both review and broaden the set of explanatory 
mechanisms proposed in the literature for undesired effects of automation. We argue 
that while “complacency” often seems the natural explanation for such effects, they 
may often instead be the result of complex cognitive mechanisms in decision making 
under uncertainty. At each demand for a decision, the operator's use of computer help 
depends on the details of that individual demand as well as on the operator's skills and 
the computer's design. Performance can be influenced by all of these factors as well as 
interactions among them. We present a (non exhaustive) set of possible cause-effect 
mechanisms contributing to human error. Due to space restrictions, we focus on: 
errors of omission (human failure to react to target events) when using computerised 
alerting tools. The intention is to help designers of these socio-technical systems (i.e., 
the combination of computer algorithms, user interfaces, procedures, training 
protocols, etc.) to adopt appropriate defences to match these diverse threats.   

In what follows, we present: an overview of the human factors literature on 
automation bias and related concepts (section 2); a brief description of a case study in 
the area of computer-assisted cancer detection, which has motivated many of the 
analyses and conclusions presented in this paper (section 3); an outline of the 
mechanisms contributing to errors of omission by computer-assisted operators 
(section 4); a discussion of the uses and limitations of this descriptive approach 
(section 5); and conclusions (section 6).  

2   Literature on Automation Bias, Complacency and Trust 

2.1   Scope and Terminology 

Our review focuses on computer assisted monitoring or decision making, where an 
automated alerting tool supports human decisions with some form of non-binding 



“advice”, which can take the form of filtered or enhanced information, alerts and 
prompts.  

The operating scenario we envisage is that, for the user or operator, demands for 
action may arise (for instance, a patient’s vital sign indicate an impending crisis; two 
vehicles are approaching a potential collision; a word is misspelled in a document). 
The user sees the raw data about the situation (pulse, blood pressure, etc. for a 
patient; position and motion vectors of vehicles, visually estimated or displayed on a 
radar screen; the text of the document) in which s/he needs to detect cues (specific 
combinations of ranges of vital signs, or distance and velocities, or the misspelled 
word itself) and assess them and, if necessary, make an alarm response, such as 
applying emergency treatment to a patient, initiate evasive manoeuvres, search for an 
alternative spelling of a word. A cue may indicate a target (real need for an alarm 
response: a demand implies the presence of at least one target), but the user needs to 
apply skill and knowledge to decide whether a given cue actually represents a target.  
To support the user, the computerised warning tool is designed to provide prompts 
(e.g. visual highlights on a screen) that point at cues for consideration. In this initial 
analysis, we do not consider the possibility that the tools also suggest specific actions. 
There is the possibility of the tool missing targets (false negative error, or FN), as well 
as of false prompts (false positive error, or FP). The tool can be assessed in terms of 
its probabilities of FN or FP errors, or equivalent pairs of measures (e.g. 
sensitivity/specificity are often used in the medical literature).  

The errors of the human-computer system can also be classified into false 
negatives (the user fails to initiate an alarm response despite a target being present) 
and false positives (the user initiates an alarm response in the absence of a target) and 
the system’s dependability described by FN and FP error probabilities (or equivalent 
pairs of measures). Another important figure is the alarm response rate – the 
cumulative frequency of alarm responses, either correct or spurious – since these are 
costly and most systems can only function if this rate is less than a certain threshold.  

At this juncture it is useful to introduce some terminology from the human factors 
literature to contextualise the scope of systems and of errors that we cover here.  

Parasuraman and Riley [10] discussed different ways in which human-computer 
interaction can go wrong and talked about three aspects of ineffective human use of 
automation: disuse, i.e., underutilization of automation, where humans ignore 
automated warning signals; misuse, i.e., over-reliance on automation, where humans 
are more likely to rely on computer advice (even if wrong) than on their own 
judgement; abuse, when technology is developed without due regard for human needs 
or the consequences for human (and hence system) performance and the operator’s 
authority in the system. 

 Skitka and colleagues [13] focused on the misuse of automation, in particular on 
the “automation bias” effects occurring when people used wrong computer advice for 
monitoring tasks in aviation. They distinguished two types of computer-induced error: 
a) errors of commission: decision-makers follow automated advice even in the face of 
more valid or reliable indicators suggesting that the automated aid is wrong; b) errors 
of omission: decision makers do not take appropriate action, despite non-automated 
indications of problems, because the automated tool did not prompt them. 

Focusing on  warnings generated by automated tools, Meyer [14], distinguishes 
between two alternative ways in which humans can “follow” or “conform to” the 



advice from a warning system: compliance and reliance. Compliance indicates that 
the operator acts according to a warning signal and takes an action. Reliance is used 
to describe those situations where the warning system indicates that “things are OK” 
and the operator accordingly – i.e. not merely coincidentally – takes no action.  

We can see that, combining Skitka’s and Meyer's terminologies, undue compliance 
(complying with an incorrect automated warning) would lead to errors of commission 
and undue reliance (failing to take action when no automated warning is issued) 
would lead to errors of omission. 

2.2   Automation Bias, Complacency and Trust 

The phrase “automation bias” was introduced by Mosier et al. [15] when studying the 
behaviour of pilots in a simulated flight. In this study, they encountered both omission 
and commission errors. These findings were then replicated with non-pilot samples 
(student participants) in laboratory settings simulating aviation monitoring tasks [13]. 
They found that, when the automated tool was reliable, the participants in the 
automated condition made more correct responses. However, participants with 
automation that was imperfect (i.e. occasionally giving unreliable support) were more 
likely to make errors than those who performed the same task without automated 
advice. In Skitka and colleagues’ studies, the decision-makers had access to other 
(non automated) sources of information. In the automated condition they were 
informed that the automated tool was not completely reliable but all other instruments 
were 100% reliable. Still, many chose to follow the advice of the automated tool even 
when it was wrong and was contradicted by the other sources of information. The 
authors concluded that these participants had been biased by automation and 
interpreted their errors (especially their errors of omission) as a result of complacency 
or reduction in vigilance. 

Factors that have been investigated in empirical studies as possible influences in 
people’s vulnerability to automation bias include: individual differences among 
operators [5, 13, 16, 17]; people’s accountability for their own decisions [17]; the 
levels of automation at which the computer support is provided [12, 18]; the location 
of computer advice/warnings with respect to raw data or other non-automated sources 
of information [19, 20]; people’s exposure to automation failures [21]. 

People’s ineffective use of computerised tools is often described in terms of 
“complacency”, which is said to cause over-reliance or “uncritical reliance”  on 
automation [7-10]. However, there is no general agreement about what exactly is 
“complacency” and what are the best ways to measure it [16]. What seems to be 
common to most characterisations is a sense of contentment, unawareness of dangers 
or deficiencies and failure to look for evidence or to examine the raw data in a careful 
enough manner. 

However, a problem with terms like “complacency” is that they convey value 
judgments on the human experts. Moray [22] points out that the claim that automation 
fosters complacency suggests that operators are at fault and  argues that the problem 
often lies in the characteristics of the automated tools, not in the human operators’ 
performance. Similarly, Wickens and Dixon [23] question the notions of complacency 
or reduced vigilance as explanations of automation bias. Instead, they argue that 



operators, whilst being aware of the unreliability of the diagnostic tools, choose to 
depend on the imperfect computer output to keep their cognitive processing resources 
for other tasks, particularly in situations with high workload.  

Another concept that is frequently invoked when talking about automation bias or 
(over)reliance on automation is “trust” [4-6, 8, 10, 24-29].  The common assumption 
is that the more a human operator trusts an automated aid the more likely s/he is to 
rely on or comply with the advice provided by the aid. If a human trusts an aid that is 
adequately reliable or fails to trust an aid that is indeed too unreliable, appropriate use 
of automation should occur as a result. However if a human trusts (and therefore 
follows the advice of) an unreliable tool, then automation bias may occur (or misuse 
of automation as defined above). Similarly if a person does not trust a highly reliable 
tool, the person may end up disusing (as defined above) or under-using the tool, and 
hence the full potential benefits of automation will not be fulfilled. 

Subjective measures of the trust of human operators in a computer tool have been 
found to be highly predictive of people’s frequency of use of the tool [5, 30]. Use of 
automation (or reliance in its generic sense) is usually assessed with observations of 
the proportion of times during which a device is used by operators or by assessing the 
probability of operators’ detecting automation failures [19]. 

Factors that have been investigated in empirical studies as possible influences in 
people’s trust in automation include: people’s exposure to automation errors [5, 30, 
31], the consistency of the tool’s reliability [16, 32], the invasiveness or intrusiveness 
of the tool’s advice [33, 34]. 

3   A Case Study: Computer Aided Detection (CAD) for 
Mammography 

Many of the considerations we present originate from a case study we conducted in 
the area of CAD for breast cancer screening [35-40]. In breast screening, expert 
clinicians (“readers”) examine mammograms (X-ray images of a woman's breasts), 
and decide whether the patient should be “recalled” for further tests because they 
suspect cancer. A CAD tool is designed to assist the interpretation of mammograms 
primarily by alerting readers to potentially cancerous areas that they may otherwise 
overlook. CAD is not meant to be a diagnostic tool: its prompts areas of the 
mammograms, but it is up to the reader to classify them as potentially cancerous or 
not and reach the “recall/no recall” decision. According to the intention of the 
designers, it should help to avoid a cancer being missed but not cause a cancer to be 
missed. 

Our study provided evidence of automation bias effects in the use of CAD; effects 
which could not be attributed to complacency and could actually coexist with users’ 
reported mistrust towards the tool [35]. Previous studies had concluded that on 
average using CAD was either beneficial or ineffectual. Our analyses indicated 
instead that, although CAD reduced decision errors by some readers on some cases, it 
also increased errors by some readers on some cases. In short, this simple computer-
assisted task hid subtle effects, easy to miss by designers and assessors [37]. 



 

Fig. 1. Cause-effect chains leading to omission errors by computer-supported operators 



4   Diverse Causes of Errors by Humans with Computer Support 

Figure 1 shows a graphical representation of cause-effect chains involved in “errors of 
omission”, as an incomplete but complex account of “automation bias”. In the graph, 
rectangles denote observable behaviours; oval shapes represent causal factors 
(characteristics of the tool and/or of the user, including cognitive mechanisms and 
affective states) that may be present in the human-computer system, although perhaps 
not directly observable; and the diamond-like shapes (all at the bottom of the graph), 
characteristics of a specific demand and/or user that may trigger the effects of one or 
the other of the oval nodes. The lines between nodes indicate causal links. A black 
arrow indicates an “increase” relationship (i.e., an increase or intensification of the 
factor identified by the source node leads to a change in the same direction for the 
target node); a white arrow indicates a “decrease” relationship (an increase of the 
source node factor leads to a decrease of the target node factor); lines with both a 
black and a white arrow indicate that there is an influence but the direction of change 
can go either up or down depending on the circumstances. Multiple arrows into a 
node have an “OR” semantics: any one of the source nodes may affect the target 
node, irrespective of whether other source nodes do.   

As noted, we focus on human errors of omission, exemplified by node 1 in the 
graph: “Human FN (false negative) rate”. This node denotes the increased likelihood 
that a human’s FN rate is higher when using computer support than when not using it. 
In mammography, a human FN is a radiologist’s failure to recall a patient whose 
mammogram contains indications of cancer that s/he has missed or misinterpreted; in 
collision warning systems, a human FN is an operator’s failure to notice the proximity 
between two vehicles or aircraft and her/his consequent failure to initiate evasive 
manoeuvres or give the necessary directions to colleagues.  

We represent in nodes 2-4 our three main conjectures about how this increase in 
operator’s FN rate comes about (possibly just three very plausible examples out of 
many other possible contributing mechanisms). Node 2 refers to the processing of raw 
data (the detection of or search for target cues). Nodes 3 and 4 refer to “diagnostic” 
aspects of the decision making (i.e., the interpretation or classification of the raw data 
once the operator has collected or detected them). More specifically: 
• Node 2, “Reduced Search”: the operator fails to either complete the search for all 

possible cues (e.g. suspicious features in a mammogram) or to examine all the 
necessary raw data to make a decision.  

• Node 3, “Explicit Diagnostic Misuse”: the operator, in deciding the value of a cue 
towards a decision, gives the tool’s prompts more weight than intended by the 
designers. For example, in CAD for mammography, the prompts are meant as pure 
alerts, without diagnostic value and the procedure prescribed that if a user had 
decided to recall a case before seeing the prompts, s/he should not change her/his 
decision to “no recall” after seeing the prompts [37]. If a reader performs this 
forbidden action, it is explicit diagnostic misuse. By “explicit” we mean that such 
violations could be identified, e.g. by the user her/himself, differently from the 
form of potential tool misuse represented by the next node, 4. 

• Node 4, “Raised Diagnostic Threshold”: an operator raises the degree of “strength” 
or “severity” of cues that s/he requires in order to initiate an alarm response 



without a prompt from the tool. For certain borderline cases the user, when not 
using computer support, might be cautious and give an alarm response; for 
example, when seeing a moderately suspicious feature on a mammogram, a reader 
recalls the patient for further examinations even if it is not clear that she may have 
cancer. But if “supported” by the tool, the operator may become “less cautious” 
when interpreting those cues; for example, in a first examination, the reader 
decides not to recall the patient and waits to see the CAD prompts before 
committing her/himself to a recall decision.  

 
Let us discuss some of the different paths that can lead to these three “top level” 

nodes (and, ultimately, to raised human FN rate).  
We start with node 8, the tool’s sensitivity (“Tool’s hit rate”), an “obviously” 

beneficial characteristic. Increasing tool sensitivity is, in principle, desirable; and this 
is a goal tool designers normally aim for. However, it may actually lead to 
undesirable effects because increasing it usually increases the rate of false prompts 
(link to node 6 in the graph). Processing false prompts can be costly. Radiologists, for 
example, are known to be concerned with explaining why each prompt is present [37, 
41]. Also, in aviation, pilots using TCAS (Traffic Collision Avoidance System) are 
strictly instructed to regard all automated messages as genuine alerts demanding an 
immediate, high-priority response [42]. Processing false prompts demands time and 
cognitive resources, and thus can lead to “Time Pressure” (node 9) and “Cognitive 
Overload” (node 5: presence of confusion that does not allow the operator to process 
information properly). Time pressure and cognitive overload are indeed 
interconnected and both reduce the operator’s ability to complete the search for cues 
(links to node 2). It is important to note that none of the mechanisms just described (in 
connection with the tool’s sensitivity) imply “over-reliance” on automation or 
“complacency”. The tool affects the operators, but they are not conforming to its 
advice. In fact, operators’ performance could be worse with computer support even 
for demands for which the tool provides correct advice. Evidence from the case study 
on CAD in breast screening strongly supports this view [35, 36]. Nodes 18 and 16, in 
conjunction with node 6, illustrate the “cry wolf” situation that may explain 
phenomena like this. Imagine that a true prompt (e.g., one signalling cancer in a 
mammogram) is surrounded by a cluster of many obviously false prompts (node 18). 
The user may infer that prompts in this case are not correlated with the presence of 
cancer (node 16); the value of the true prompt gets diminished for the radiologist, 
leading her/him to overlook correct prompts. 

The tool’s sensitivity (node 8) can lead to unanticipated human error through what 
we call “Normative reliance” on the tool (node 15). By “normative” we mean it fits a 
“normatively correct”, rational decision making process. This can take, at least, two 
different forms: 
• Based on their experience with a highly sensitive tool, operators correctly use 

prompts as a sign of possible missed targets. This can lead to “Raised Diagnostic 
Threshold” (link to node 4) and eventually to increased operator FN rate (node 1) 
in the following way. If the tool is useful, it causes an increase of correct “alarm 
responses” but it may also increase the number of false alarm responses (human 
FPs). Operators know that too high an “alarm response rate” is unacceptable; for 
instance, too many false recalls may make a cancer screening program unable to 



cope with the true cases. Therefore, raising the operator’s own threshold is a 
reasonable reaction, irrespective of whether it is intentional or not. However it may 
overcompensate, or at least make the operator miss some targets that s/he would 
not have missed without the tool, although overall s/he misses fewer targets with 
the tool. 

• Many of the prompts are spurious, so operators correctly learn to associate “no 
prompt” with likely absence of target (node 17). This can lead to reduced data 
search (node 2). As a result, given a FN from the tool, the user’s normative reliance 
on the tool will lead him/her to miss the target (node 1). A “rational” user will be 
especially likely to reduce the search in the light of absence of prompts if detailed 
analysis of every prompt is too demanding and, especially, if it is practically 
infeasible. 
The association between absence of prompts and absence of target can lead to a 

different, less “rational”, path, involving trust (node 11), an “affective” (rather than 
cognitive) state, which may be affected by experience of reliability, but also by many 
other factors, and may be far stronger or far weaker than warranted by experience. 
Here we envisage complacency, represented by “Abdicating responsibility to tool” 
(node 10) as the result of a person’s “negotiation” between the trust s/he has in her/his 
own abilities (node 13) and her/his trust in the tool. Expert operators often have 
beliefs about what tasks they are good at and what tasks they are less competent at 
[37]. If the user trusts the tool more than her/himself for a particular task, s/he will be 
more likely to over-rely on it (i.e., relinquishing responsibility to automation). 
Various (non exhaustive) links in the graph indicate the various factors or 
mechanisms that may affect trust.  

There are also situations when people abdicate responsibility to the tool even if 
they do not trust it. For example, the mere fact that the operator knows that computer 
support is available could in itself lead to complacency (links from node 14, 
“Availability of the computer tool” per se, to node 10), in a process equivalent to 
what some psychologists term “social loafing”: when people work with other people, 
diffusion of responsibility often takes place [43, 44]. Importantly, specific situations 
with high degrees of uncertainty (node 21), especially when other more reliable 
sources of information are missing (node 23), may make operators vulnerable and 
cause them to rely on computer support more than they would normally do, even if 
they do not trust its reliability. We found evidence for this in our study of CAD use 
with difficult-to-detect cancers [35]. 

Node 14 designates other ways in which the “Presence of the Tool” per se (no 
matter how reliable) can also contribute to human error without over-reliance or 
complacency. For instance, the need to examine and process the tool’s output may in 
itself increase time pressure (node 9) and cognitive load (node 5).   

For the sake of brevity, we leave out of this exposition a few of the nodes and links 
in the graph, which we believe are self-explanatory. 



5    Discussion 

5.1 Uses of this approach 

The main purpose of the diagram in Fig 1 is to assist a designer or assessor in 
identifying the causal chains leading to undesired effects. A designer can try to 
interrupt the chain by appropriate design decisions. The fact that the graph represents 
multiple interacting causal chains should help against tunnel vision, i.e., focusing on 
one obvious concern while ignoring others. For instance, a designer might try to 
counteract factor represented by node 2 in the graph, assuming it is mainly caused by 
factor in node 17, via procedural restrictions, such as requiring that the user reach a 
provisional decision and take responsibility for it (e.g. by recording it in  a log) before 
seeing the tool's prompts. But this remedy might not work against factor in node 2, or 
might even make it worse if mandating this more complex procedure exacerbates 
factor in node 9; or if, despite factor in node 2 being alleviated or eliminated, the main 
(neglected) mechanism through which the tool causes certain extra false negative 
decisions is node 4.  

So far we have talked about the need for completeness in analyses. In designing a 
human-computer system, it would be good to focus on those possible causal chains 
that will be important in a specific system and context of operation. For this kind of 
optimisation, one needs empirical observations in the environment of use, if feasible. 
To help when these observations are not available, further research should try to 
identify general rules for forecasting the relative importance of the different 
mechanisms in a future system and environment of use. Last, system designers may 
wish to incorporate in the design degrees of “tuneability” for the parameters (of the 
algorithms in the tool, the procedure for using it, etc.) to allow adjustments in 
operation, so as to achieve good trade-offs between positive and negative effects. 

5.2 Limitations, quantitative aspects 

We highlight next some problems that this descriptive approach does not address. 
Quantitative trade-offs may be necessary in design. The relative importance of the 
various causal mechanisms in the graph will vary between systems, between users in 
the same system and between demands. This is because the parameters of human 
reactions to cues and prompts may well vary between categories of demands, just as 
those of the tool's reactions do (e.g., being better at detecting and prompting certain 
kinds of cues than others). Especially with increasing experience, a user might, for 
instance, learn to trust a computer’s prompts highly for certain types of demand, an 
only little for others. A support tool may have a positive effect on the reactions of 
certain population of users to most demands, but still have a detrimental effect on 
some categories of demands for a subset of those users. These factors may require 
designers to consider quantitative trade-offs, and to assess the effects of uncertainties 
about the environment of use of an alerting tool.  

We have modelled [40] the cumulative effect of these different reaction patterns, to 
quantitatively identify possible design trade-offs, showing that complex effects are 
possible. Depending on the trade-offs made by designers and their effects on various 



classes of demand (and the frequencies of these classes of demands), a tool designed 
to help might have a damaging effect (aggregated over the whole population of users 
and distribution of demands). Much more commonly, improving the aggregated 
dependability of the socio-technical system requires consideration of the various 
design trade-offs affecting the overall FN and FP rates for all classes of demands. For 
instance, if factor in node 4 in the graph causes, on average, operators to end up with 
a few more false negatives on a difficult but rare class of demands, while allowing 
them to reduce false negatives – without an excessive increase in false positives – on 
a  more common class of demands, the net effect may be beneficial. A possible 
complication is that of errors causing different degrees of loss depending on the class 
of demands: in the above example, if FNs on the class of “difficult” demands tended 
to cause more serious consequences, using the tool might increase the overall amount 
of loss caused by the decisions compared to the unaided user. Even with a tool whose 
aggregated effect is unambiguously positive, its potential for increasing human FNs 
on specific classes of demands may cause concerns. For example, for a medical 
decision aid, the net effect may be a transfer of risk from certain patients to others: 
introducing the aid might reduce risk for the average patient and yet increase risk for 
the average patient from a certain age or ethnic group. Or the aid may have the effect 
of improving the performance of most doctors but making it worse for some specific 
doctors. 

6   Conclusions 

With reference to a category of computer-assisted human tasks, we have 
highlighted a variety of alternative mechanisms that could lead to omission errors by 
the computer assisted operators. We have shown that errors that are often ascribed to 
“complacency” or “over-reliance” on computers, can actually be caused by other 
mechanisms, in fact even when the operators do not trust the automated tool. 

The various mechanisms are interrelated in complex ways, so that the presence and 
characteristics of the alerting tool may affect the FN rate in more than one way. If a 
designer focused on only part of the graph in our Fig. 1, trying to “cut” one of the 
links so as to defeat one of these damaging mechanisms, succeeding might not bring 
any benefit because, in the system, the predominant damaging mechanism may be 
another mechanism. 

So, when designing a tool and the human-computer system to include it, it is 
certainly important to be aware of the risk of complacency (e.g. by prescribing 
appropriate training or procedures), but this may not be enough. In particular, we have 
shown that some of these error mechanisms may be an inherent part of the human 
cognitive apparatus for reacting to cues and alarms, so they cannot be effectively shut 
off. A proper design of the human-machine system would look for the best trade-off 
between the positive and negative effects, rather than assuming that negative effects 
can be completely eliminated; and evaluators and adopters, when assessing a design, 
need to be aware of these various facets of the effects of a tool. 

The graph presented in Fig. 1, based on our deductions from empirical work and 
from prior literature, is likely to be incomplete; but it indicates a useful way towards 



more explicit and complete ways of considering error causes when designing human-
computer systems. 
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